Topic:Diabetes Prediction
What is Diabetes Prediction? Diabetes prediction is the process of forecasting the risk of developing diabetes based on health data and other factors.
Papers and Code
Apr 30, 2025
Abstract:Chronic diseases, such as cardiovascular disease, diabetes, chronic kidney disease, and thyroid disorders, are the leading causes of premature mortality worldwide. Early detection and intervention are crucial for improving patient outcomes, yet traditional diagnostic methods often fail due to the complex nature of these conditions. This study explores the application of machine learning (ML) and deep learning (DL) techniques to predict chronic disease and thyroid disorders. We used a variety of models, including Logistic Regression (LR), Random Forest (RF), Gradient Boosted Trees (GBT), Neural Networks (NN), Decision Trees (DT) and Native Bayes (NB), to analyze and predict disease outcomes. Our methodology involved comprehensive data pre-processing, including handling missing values, categorical encoding, and feature aggregation, followed by model training and evaluation. Performance metrics such ad precision, recall, accuracy, F1-score, and Area Under the Curve (AUC) were used to assess the effectiveness of each model. The results demonstrated that ensemble methods like Random Forest and Gradient Boosted Trees consistently outperformed. Neutral Networks also showed superior performance, particularly in capturing complex data patterns. The findings highlight the potential of ML and DL in revolutionizing chronic disease prediction, enabling early diagnosis and personalized treatment strategies. However, challenges such as data quality, model interpretability, and the need for advanced computational techniques in healthcare to improve patient outcomes and reduce the burden of chronic diseases. This study was conducted as part of Big Data class project under the supervision of our professors Mr. Abderrahmane EZ-ZAHOUT and Mr. Abdessamad ESSAIDI.
Via

Apr 30, 2025
Abstract:Diabetic retinopathy is a severe eye condition caused by diabetes where the retinal blood vessels get damaged and can lead to vision loss and blindness if not treated. Early and accurate detection is key to intervention and stopping the disease progressing. For addressing this disease properly, this paper presents a comprehensive approach for automated diabetic retinopathy detection by proposing a new hybrid deep learning model called VR-FuseNet. Diabetic retinopathy is a major eye disease and leading cause of blindness especially among diabetic patients so accurate and efficient automated detection methods are required. To address the limitations of existing methods including dataset imbalance, diversity and generalization issues this paper presents a hybrid dataset created from five publicly available diabetic retinopathy datasets. Essential preprocessing techniques such as SMOTE for class balancing and CLAHE for image enhancement are applied systematically to the dataset to improve the robustness and generalizability of the dataset. The proposed VR-FuseNet model combines the strengths of two state-of-the-art convolutional neural networks, VGG19 which captures fine-grained spatial features and ResNet50V2 which is known for its deep hierarchical feature extraction. This fusion improves the diagnostic performance and achieves an accuracy of 91.824%. The model outperforms individual architectures on all performance metrics demonstrating the effectiveness of hybrid feature extraction in Diabetic Retinopathy classification tasks. To make the proposed model more clinically useful and interpretable this paper incorporates multiple XAI techniques. These techniques generate visual explanations that clearly indicate the retinal features affecting the model's prediction such as microaneurysms, hemorrhages and exudates so that clinicians can interpret and validate.
* 33 pages, 49 figures
Via

Apr 16, 2025
Abstract:Objective: Create precise, structured, data-backed guidelines for type 2 diabetes treatment progression, suitable for clinical adoption. Research Design and Methods: Our training cohort was composed of patient (with type 2 diabetes) visits from Boston Medical Center (BMC) from 1998 to 2014. We divide visits into 4 groups based on the patient's treatment regimen before the visit, and further divide them into subgroups based on the recommended treatment during the visit. Since each subgroup has observational data, which has confounding bias (sicker patients are prescribed more aggressive treatments), we used machine learning and optimization to remove some datapoints so that the remaining data resembles a randomized trial. On each subgroup, we train AI-backed tree-based models to prescribe treatment changes. Once we train these tree models, we manually combine the models for every group to create an end-to-end prescription pipeline for all patients in that group. In this process, we prioritize stepping up to a more aggressive treatment before considering less aggressive options. We tested this pipeline on unseen data from BMC, and an external dataset from Hartford healthcare (type 2 diabetes patient visits from January 2020 to May 2024). Results: The median HbA1c reduction achieved by our pipelines is 0.26% more than what the doctors achieved on the unseen BMC patients. For the Hartford cohort, our pipelines were better by 0.13%. Conclusions: This precise, interpretable, and efficient AI-backed approach to treatment progression in type 2 diabetes is predicted to outperform the current practice and can be deployed to improve patient outcomes.
Via

Apr 15, 2025
Abstract:Training Neural Networks (NNs) to behave as Model Predictive Control (MPC) algorithms is an effective way to implement them in constrained embedded devices. By collecting large amounts of input-output data, where inputs represent system states and outputs are MPC-generated control actions, NNs can be trained to replicate MPC behavior at a fraction of the computational cost. However, although the composition of the training data critically influences the final NN accuracy, methods for systematically optimizing it remain underexplored. In this paper, we introduce the concept of Optimally-Sampled Datasets (OSDs) as ideal training sets and present an efficient algorithm for generating them. An OSD is a parametrized subset of all the available data that (i) preserves existing MPC information up to a certain numerical resolution, (ii) avoids duplicate or near-duplicate states, and (iii) becomes saturated or complete. We demonstrate the effectiveness of OSDs by training NNs to replicate the University of Virginia's MPC algorithm for automated insulin delivery in Type-1 Diabetes, achieving a four-fold improvement in final accuracy. Notably, two OSD-trained NNs received regulatory clearance for clinical testing as the first NN-based control algorithm for direct human insulin dosing. This methodology opens new pathways for implementing advanced optimizations on resource-constrained embedded platforms, potentially revolutionizing how complex algorithms are deployed.
Via

Apr 12, 2025
Abstract:The dead-in-bed syndrome describes the sudden and unexplained death of young individuals with Type 1 Diabetes (T1D) without prior long-term complications. One leading hypothesis attributes this phenomenon to nocturnal hypoglycemia (NH), a dangerous drop in blood glucose during sleep. This study aims to improve NH prediction in children with T1D by leveraging physiological data and machine learning (ML) techniques. We analyze an in-house dataset collected from 16 children with T1D, integrating physiological metrics from wearable sensors. We explore predictive performance through feature engineering, model selection, architectures, and oversampling. To address data limitations, we apply transfer learning from a publicly available adult dataset. Our results achieve an AUROC of 0.75 +- 0.21 on the in-house dataset, further improving to 0.78 +- 0.05 with transfer learning. This research moves beyond glucose-only predictions by incorporating physiological parameters, showcasing the potential of ML to enhance NH detection and improve clinical decision-making for pediatric diabetes management.
* Published at ICLR 2025 Workshop on AI for Children
Via

Apr 14, 2025
Abstract:Frequent and long-term exposure to hyperglycemia (i.e., high blood glucose) increases the risk of chronic complications such as neuropathy, nephropathy, and cardiovascular disease. Current technologies like continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) primarily model specific aspects of glycemic control-like hypoglycemia prediction or insulin delivery. Similarly, most digital twin approaches in diabetes management simulate only physiological processes. These systems lack the ability to offer alternative treatment scenarios that support proactive behavioral interventions. To address this, we propose GlyTwin, a novel digital twin framework that uses counterfactual explanations to simulate optimal treatments for glucose regulation. Our approach helps patients and caregivers modify behaviors like carbohydrate intake and insulin dosing to avoid abnormal glucose events. GlyTwin generates behavioral treatment suggestions that proactively prevent hyperglycemia by recommending small adjustments to daily choices, reducing both frequency and duration of these events. Additionally, it incorporates stakeholder preferences into the intervention design, making recommendations patient-centric and tailored. We evaluate GlyTwin on AZT1D, a newly constructed dataset with longitudinal data from 21 type 1 diabetes (T1D) patients on automated insulin delivery systems over 26 days. Results show GlyTwin outperforms state-of-the-art counterfactual methods, generating 76.6% valid and 86% effective interventions. These findings demonstrate the promise of counterfactual-driven digital twins in delivering personalized healthcare.
Via

Apr 08, 2025
Abstract:Monitoring maternal and fetal health during pregnancy is crucial for preventing adverse outcomes. While tests such as ultrasound scans offer high accuracy, they can be costly and inconvenient. Telehealth and more accessible body shape information provide pregnant women with a convenient way to monitor their health. This study explores the potential of 3D body scan data, captured during the 18-24 gestational weeks, to predict adverse pregnancy outcomes and estimate clinical parameters. We developed a novel algorithm with two parallel streams which are used for extract body shape features: one for supervised learning to extract sequential abdominal circumference information, and another for unsupervised learning to extract global shape descriptors, alongside a branch for demographic data. Our results indicate that 3D body shape can assist in predicting preterm labor, gestational diabetes mellitus (GDM), gestational hypertension (GH), and in estimating fetal weight. Compared to other machine learning models, our algorithm achieved the best performance, with prediction accuracies exceeding 88% and fetal weight estimation accuracy of 76.74% within a 10% error margin, outperforming conventional anthropometric methods by 22.22%.
Via

Apr 09, 2025
Abstract:Metabolic Syndrome (MetS) is a cluster of interrelated risk factors that significantly increases the risk of cardiovascular diseases and type 2 diabetes. Despite its global prevalence, accurate prediction of MetS remains challenging due to issues such as class imbalance, data scarcity, and methodological inconsistencies in existing studies. In this paper, we address these challenges by systematically evaluating and optimizing machine learning (ML) models for MetS prediction, leveraging advanced data balancing techniques and counterfactual analysis. Multiple ML models, including XGBoost, Random Forest, TabNet, etc., were trained and compared under various data balancing techniques such as random oversampling (ROS), SMOTE, ADASYN, and CTGAN. Additionally, we introduce MetaBoost, a novel hybrid framework that integrates SMOTE, ADASYN, and CTGAN, optimizing synthetic data generation through weighted averaging and iterative weight tuning to enhance the model's performance (achieving a 1.14% accuracy improvement over individual balancing techniques). A comprehensive counterfactual analysis is conducted to quantify feature-level changes required to shift individuals from high-risk to low-risk categories. The results indicate that blood glucose (50.3%) and triglycerides (46.7%) were the most frequently modified features, highlighting their clinical significance in MetS risk reduction. Additionally, probabilistic analysis shows elevated blood glucose (85.5% likelihood) and triglycerides (74.9% posterior probability) as the strongest predictors. This study not only advances the methodological rigor of MetS prediction but also provides actionable insights for clinicians and researchers, highlighting the potential of ML in mitigating the public health burden of metabolic syndrome.
* Accepted at the IEEE EMBC 2025 Conference. 7 pages, 3 figures
Via

Apr 05, 2025
Abstract:Type 2 Diabetes Mellitus (T2DM) remains a global health challenge, underscoring the need for early and accurate risk prediction. This study presents ECG-DiaNet, a multimodal deep learning model that integrates electrocardiogram (ECG) features with clinical risk factors (CRFs) to enhance T2DM onset prediction. Using data from Qatar Biobank (QBB), we trained and validated models on a development cohort (n=2043) and evaluated performance on a longitudinal test set (n=395) with five-year follow-up. ECG-DiaNet outperformed unimodal ECG-only and CRF-only models, achieving a higher AUROC (0.845 vs 0.8217) than the CRF-only model, with statistical significance (DeLong p<0.001). Reclassification metrics further confirmed improvements: Net Reclassification Improvement (NRI=0.0153) and Integrated Discrimination Improvement (IDI=0.0482). Risk stratification into low-, medium-, and high-risk groups showed ECG-DiaNet achieved superior positive predictive value (PPV) in high-risk individuals. The model's reliance on non-invasive and widely available ECG signals supports its feasibility in clinical and community health settings. By combining cardiac electrophysiology and systemic risk profiles, ECG-DiaNet addresses the multifactorial nature of T2DM and supports precision prevention. These findings highlight the value of multimodal AI in advancing early detection and prevention strategies for T2DM, particularly in underrepresented Middle Eastern populations.
Via

Apr 07, 2025
Abstract:Understanding how urban socio-demographic and environmental factors relate with health is essential for public health and urban planning. However, traditional statistical methods struggle with nonlinear effects, while machine learning models often fail to capture geographical (nearby areas being more similar) and topological (unequal connectivity between places) effects in an interpretable way. To address this, we propose MedGNN, a spatio-topologically explicit framework that constructs a 2-hop spatial graph, integrating positional and locational node embeddings with urban characteristics in a graph neural network. Applied to MEDSAT, a comprehensive dataset covering over 150 environmental and socio-demographic factors and six prescription outcomes (depression, anxiety, diabetes, hypertension, asthma, and opioids) across 4,835 Greater London neighborhoods, MedGNN improved predictions by over 25% on average compared to baseline methods. Using depression prescriptions as a case study, we analyzed graph embeddings via geographical principal component analysis, identifying findings that: align with prior research (e.g., higher antidepressant prescriptions among older and White populations), contribute to ongoing debates (e.g., greenery linked to higher and NO2 to lower prescriptions), and warrant further study (e.g., canopy evaporation correlated with fewer prescriptions). These results demonstrate MedGNN's potential, and more broadly, of carefully applied machine learning, to advance transdisciplinary public health research.
* 12 pages' main content. This is a preprint. Submitted to KDD 2025
Via
